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This paper is concerned with the e!ect of water depth on the free vibration of
free-edge circular plates resting on a free #uid surface. The problem addressed is
formulated by using the Hankel transformation method, which leads to dual
integral equations. The solution of dual integral equations is solved numerically by
using Fourier}Bessel series. The #uid is assumed to be inviscid and incompressible.
The Kirchho! theory of plates is used to model the elastic thin plate. Numerical
results are given in non-dimensional form for free-edge circular plates, in order to
be ready-to-use in applications. To validate the theoretical results, experiments
were carried out. Experimental results are in good agreement with theoretical
results. It is found that the e!ect of the #uid depth can be neglected when the #uid
depth is greater than the diameter of the circular plates but becomes signi"cant as
the water depth decreases. It is also observed in the experimental results that the
#uid damping increases as the water depth decreases.

( 2000 Academic Press
1. INTRODUCTION

There have been many studies concerning vibrations of circular plates in contact
with #uid. After the pioneering work of Lord Rayleigh [1], the "rst study on this
topic can be attributed to Lamb [2]. He studied the free vibrations of clamped,
circular ba%ed plates by using simple assumed modes and an approximation to
obtain the hydrodynamic pressure; this solution was extended to free-edge circular
plates by McLachlan [3]. Amabili and Kwak [4] have recently solved the same
problem by using a re"ned approach and Kwak [5] obtained the solution using the
Fourier}Bessel series approach.

Free vibrations of circular plates resting on a free liquid surface have been
studied for the "rst time a few years ago by Kwak and Kim [6] for axisymmetric
modes and by Kwak [7] for the general case. These studies also address circular
0022-460X/00/060171#15 $35.00/0 ( 2000 Academic Press
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plates completely submerged in an in"nite #uid domain. Experiments con"rming
the results of references [6, 7] have been performed by Amabili et al. [8]. Kwak and
Amabili [9] extended this study to annular plates, successfully comparing
theoretical and experimental results. In all these studies, the boundary conditions
on the #uid domain are mixed and give a Dirichelet problem. In particular, a zero
velocity potential is imposed at the free liquid surface, so that the e!ect of free
surface waves is neglected.

Other interesting studies on vibrations of circular plates in stationary #uids can
be found in the literature, e.g., references [10}14].

The present study addresses itself to free vibrations of circular plates resting on
a free #uid surface, which is the same problem already solved by Kwak [7];
however, in this study the e!ect of water depth is included. Amabili [15]
investigated theoretically the e!ect of #uid depth on the vibration of ba%ed circular
plates. Amabili [15] dealt with two cases; the ba%ed circular plate is located at the
bottom and it is limited by the rigid upper plane and the ba%ed circular plate is
located at the bottom and the upper plane is replaced by the free surface. The
problem considered in this paper is di!erent from the cases considered by Amabili
[15] in which circular plate is put on the free surface and the #uid is limited by the
rigid bottom. The reason for choosing this problem is that this case can be easily
dealt with experimentally. In addition, the free surface condition results in the
mixed boundary value problem [16].

The #uid is assumed to be inviscid and incompressible so that the #uid motion
can be described by the velocity potential. The Kirchho! theory of plates [17] is
used to model the elastic thin plate. Unfortunately, the closed-form solution cannot
be derived in this case. Hence, we resort to the numerical method to obtain
the non-dimensional parameters. Numerical results are then compared with the
experimental results. The experimental results are in good agreement with the
theoretical results and show that natural frequencies decreases rapidly as the water
depth becomes very shallow. However, the e!ect of water depth can be neglected if
the water depth is larger than the diameter of the circular plates. In this case, we can
use the results obtained by Kwak and Kim [6] and Kwak [7].

2. MIXED BOUNDARY VALUE PROBLEM

Let us consider a circular plate and a polar co-ordinate system (O, r, h) with the
pole O at the centre of the plate as shown in Figure 1. The transverse de#ection
w for in vacuo free vibrations of thin elastic circular plates is generally expressed by

w(r, h, t)"=
nm

(r) cos(nh) sin(ut), (1)

where =
nm

(r)"[J
n
(j

nm
r/a)#a

nm
I
n
(j

nm
r/a)] represents the mode shape, n is the

number of nodal diameters, m is the number of nodal circles, u is the radian
frequency, and j

nm
and a

nm
are the frequency and mode-shape parameters,

respectively, both depending on the plate's boundary conditions. J
n
and I

n
indicate

the Bessel function and the modi"ed Bessel function of order n respectively. The



Figure 1. Circular plate on a free #uid surface; co-ordinate system and symbols.
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equations for j
nm

and a
nm

are given in section 2; some of these data can be found in
reference [18]. The radian in vacuo frequency of vibration u

V
and the frequency

parameter j
nm

are related by

u
V
"j2

nm
JD/(o

P
ha4), (2)

where D"(Eh3)/[12(1!l2)], o
P

is the plate mass density, h is the plate thickness,
a is the plate radius, E is Young's modulus and l is the Poisson ratio. In deriving
equation (2), the Kirchho! theory of plates [17] was used.

Let us introduce the hypothesis that the mode-shapes of a vibrating plate on
a #uid surface are the same as in vacuo. This amounts to saying that the dynamic
loading of the #uid is assumed to have a negligible e!ect on the natural mode
shapes of the plate. Experimental tests, performed by Montero de Espinosa and
Gallego-Juàrez [10], Amabili et al. [8] and Amabili and Kwak [9] show that mode
shapes are little modi"ed by the presence of water, especially for free-edge plates.
Amabili and Kwak [4] theoretically computed the actual mode shapes of a ba%ed
circular plate in contact with liquid on one side. They have shown that the actual
mode shapes are quite close to the ones in vacuo, and for free-edge plates the
di!erences are particularly small. With this assumption, equation (1) is also valid
for a plate on the #uid surface.

If the #uid is incompressible and inviscid and its movement is irrotational, it is
possible to describe the #uid motion (due to the plate's vibration) by means of the
velocity potential U, which satis"es the Laplace equation +2U"0. Then, the #uid
velocity is given by v"!+U. By using the separation of variables with respect to
the cylindrical co-ordinate, U can be expressed as

U (r, h, z, t)"/(r, z) cos(nh)u cos(ut), (3)
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where u is the radian frequency of the #uid}plate system and / satis"es

L2/
Lr2

#

L/
rLr

#

L/
Lz2

!

n2

r2
/"0 in the #uid domain. (4)

Based on the problem considered in this paper, the following conditions are
imposed: (1) a contact without cavitation at the #uid}plate interface S

B
and the

#uid}bottom interface, S
D
; (2) the linearized free surface condition on the free #uid

surface S
F

and (3) the radiation condition at an in"nite distance from the plate S
R

(see Figure 1). The super"cial tension of the #uid is neglected. Therefore, the
boundary conditions can be expressed as

L/
Lz

"!=
mn

(r) on S
B
, (5)

/"0 on S
F
, (6)

/,
L/
Lr

P0 on S
R
, (7)

L/
Lz

"0 on S
D
. (8)

In order to solve the mixed boundary value problem it is useful to use the modi"ed
Hankel transformation, as addressed by Kwak and Kim [6] and Kwak [7]. It is
de"ned as

/
h
"P

=

0

r/(r, z)J
n
(mr) dr. (9)

Using equation (9), equation (4) can be reduced to the following ordinary
di!erential equation:

d2/
h

dz2
!m2/

h
"0. (10)

The general solution of equation (10) is

/
h
(m, z)"A (am)emz#B (am)e~mz (11)

Inserting equation (11) into the boundary condition, equation (8), we obtain

A(am)"B(am)e2mD. (12)
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Hence, equation (11) can be rewritten as

/
h
(m, z)"B(am)(e2mDemz#e~mz). (13)

The inversion formula for the Hankel transform gives

/(r, z)"P
=

0

m/
h
(m, z)J

n
(mr) dm. (14)

Using equations (5), (6) and (14), the mixed boundary value problem for the
addressed problem can be represented by the following dual integral equation:

P
=

0

m2B(am)(e2mD!1)J
n
(mr)"!=

nm
(r), 0(r)a,

P
=

0

mB(am)(e2mD#1)J
n
(mr)"0, r'a,

(15)

Let us introduce the following non-dimensional variables to simplify the
formulation

o"
r
a

, g"am, d"
D
a

, A(g)"g2B(g)(e2dg#1). (16)

Then, the transformed dual integral equations become

P
=

0

tanh dgA(g)J
n
(og) dg"a3=

nm
(o), 0(o)1,

P
=

0

g~1A(g)J
n
(og) dg"0, o'1.

(17)

Let us employ the following series expansion to obtain the approximate solution of
the above dual integral equation:

A (g)"a3
=
+
j/0

c
j
J
n`2f`2

(g). (18)

We also use the following property of the Bessel function [19]:

P
=

0

x~1J
n`2i`2

(ax)J
n
(bx) dx"0, for b'a, (19)
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Therefore, the second equation of equation (17) is automatically satis"ed. Inserting
equation (18) into the "rst equation of equation (17) results in

=
+
j/0

c
j P

=

0

tanh dgJ
n`2j`2

(g)J
n
(og) dg"=

nm
(o). (20)

We will use the following integral formula to solve the above equation:

g~2J
n`2i`2

(g)"
C(1#n#i)

2C(2#i)C(1#n)

P
1

0

on`1
2
F

1
(1#n#i, !1!i, 1#n, o2)J

n
(og) do, (21)

where C is the Gamma function and
2
F
1

is the hypergeometric function respectively.
Hence, equation (20) can be expressed as

=
+
i/0

K
ij
c
j
"b

i
for i"0, 1, 2,2,R, (22)

where

K
ij
"P

=

0

g~2 tanh dgJ
n`2i`2

(g)J
n`2j`2

(g) dg, (23a)

b
i
"

C(1#n#i)
2C (2#i)C(1#n) P

1

0

on`1=
nm

(o)
2
F

1
(1#n#i, !1!i, 1#n, o2) do.

(23b)

By solving the simultaneous equation (22), the coe$cient of series c
j

can be
obtained. The numerical calculation was carried out using Mathematica [20].

3. NON-DIMENSIONAL ADDED VIRTUAL MASS INCREMENTAL FACTOR

In section 2 it is assumed that the wet mode shapes are the same as the mode
shapes in vacuo, so that there is no change in kinetic and elastic potential energies of
the plate. For a plate vibrating in vacuo one can write

u2
V
"

<
P

¹*
P

, (24)
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where u
V

is the radian frequency of the plate in vacuo,<
P

is the maximum potential
energy of the plate and ¹*

P
is its reference kinetic energy. Based on the assumption

that the wet mode shapes are the same as the dry mode shapes mentioned earlier,
we can write

u2
F
"

<
P

¹*
P
#¹*

F

, (25)

where u
F

is the radian frequency of the plate in contact with the #uid surface, and
¹*

F
is the reference kinetic energy of the #uid. Using equations (24) and (25), we can

derive

u2
V
"A1#

¹*
F

¹*
P
Bu2

F
. (26)

Let us "rst derive the kinetic energy of the #uid. Using the non-dimensional
variables, the potential at the free surface can be expressed as

/(o, 0)"
1
a2 P

=

0

A (g)J
n
(og) dg. (27)

Inserting equation (18) into equation (27), we obtain

/(o, 0)"a
=
+
i/0

c
i
C(1#n#i)

2C(2#i)C(1#n)
on`1

2
F

1
(1#n#i, !1!i, 1#n, o2). (28)

It is well-known that using Green's theorem [21, 22] it is possible to evaluate the
reference kinetic energy of the #uid with a surface integral on the boundary of the
#uid domain. The boundary conditions, equations (6)}(8), imply that the integrals
on S

R
#S

F
#S

D
are zero. Hence, the reference kinetic energy of the #uid computed

by integrating only over the wet plate surface S
B
, is then expressed as

¹*
F
"!

1
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o
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/(o, 0)
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1
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o
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n P
1

0

/(o, 0)=
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(o) do, (29)

where

D
n
"G

2n
n

if n"0,
if n*1.

(30)

Inserting equation (28) into equation (29), the reference kinetic energy of the #uid is
expressed as

¹*
F
"1

2
o
F
a3D

n
D
F
, (31)
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where
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F
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0
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(o)
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1
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The kinetic energy of the plate can be expressed as [7]
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o
P
hD

n
a2D

P
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Hence, the ratio of the #uid kinetic energy and the water kinetic energy can be
expressed in terms of the non-dimensional parameters [7]:

¹*
F

¹*
P

"A
o
F
a

o
P
hB

D
F

D
P

"bC
nm

(36)

in which b"o
F
a/o

P
h is the so-called thickness correction factor and C

nm
"D

F
/D

P
is the non-dimensionalized added virtual mass incremental (NAVMI) factor [6, 7]
or zeroth order NAVMI factor. Hence, one can express the frequency change in the
form

u
F

u
V

"

1

J1#bC
nm

. (37)

4. NUMERICAL RESULTS

The frequency and mode shape parameters for free-edge circular plates in vacuo
have been reported in many studies including references [18, 23]. The frequency
parameters of circular plates having free-edge boundary conditions can be obtained
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by solving the following characteristic equations:
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where J@
n

and I@
n

indicate the derivatives of Bessel functions with respect to the
argument.

The mode-shape parameter for free-edge circular plates can be calculated by
using the following equations:

a
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"
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)!(1!l)[j

nm
I@
n
(j

nm
)!n2I

n
(j

nm
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. (39)

The various NAVMI factors C
nm

with respect to the depth ratio are plotted as lines
in Figures 2}6. In solving equation (22), 10 terms were used. The numerical results
show that the coe$cients converge to zero rapidly; hence the 10-term
approximation is validated. The NAVMI factors which can be extracted from the
graphs are ready-to-use in applications, in conjunction with equation (37), due to
their non-dimensional form.

5. EXPERIMENTS

To verify the theoretical results, the experiments were carried out for the circular
steel plate which has a 150 mm radius and a 2 mm thickness. This plate was put
Figure 2. NAVMI factor for (n"0, m"1). *, theory; s, experiment.



Figure 3. NAVMI factor for (n"1, m"1). *, theory; s, experiment.

Figure 4. NAVMI factor for (n"2, m"0). *, theory; s, experiment.
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inside the water tank which was 1)5 m in height and 1)2 m in diameter, and was
supported by the string thus enabling the free-edge boundary condition. The size of
the circular plate was relatively small compared to the size of the cylindrical water
tank, so that the wave re#ected from the wall can be ignored. We immersed half of
the plate's thickness in the water very carefully. The impulse hammer was used to
excite the circular plate and the small accelerometer (PCB 303 A03) which weighed
1)9 g was attached to the plate. The mass ratio of the accelerometer to the mass of
the plate is 2)2%. Hence, the in#uence of the mass increase due to the accelerometer
on the natural frequencies was expected to be small. The signals from the hammer
and the accelerometer were fed into the B &K 3550 FFT signal analyzer to
compute the frequency response function (FRF). The frequency bandwidth was
limited to 1)6 kHz.

The natural frequencies of the circular plates in air are measured and compared
to the theoretical frequencies in Table 1 to con"rm that the uniform and perfect



Figure 5. NAVMI factor for (n"3, m"0). *, theory; s, experiment.

Figure 6. NAVMI factor for (n"4, m"0). *, theory; s, experiment.

TABLE 1

¹he experimental and theoretical natural frequencies of the free-edge circular
plate in air

(m, n) (2, 0) (0, 1) (3, 0) (1, 1) (4, 0)

f
a

(Experiment) (Hz) 127 212 288 451 501
f
a
(Theory) (Hz) 123 206 285 468 499
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circular plate is manufactured. The material and geometrical properties of the
circular plate which is made of mild steel are o

P
"7730 kg/m3 and a"0)15 m,

h"0)002 m, E"210 GPa. The theoretical results are in good agreement with the
experimental ones as shown in Table 1.



TABLE 2

¹he experimental natural frequencies of the free-edge circular plate in water versus
water depth

(m, n)
Depth (cm) (2, 0) (0, 1) (3, 0) (1, 1) (4, 0)

1 55)5 81)0 144)5 195)0 280)0
2 67)0 108)5 171)5 252)5 323)5
3 73)0 117)5 182)5 268)0 339)0
4 76)5 122)0 188)0 278)0 348)0
5 78)0 125)0 191)0 284)0 350)0
6 78)5 128)0 191)5 284)5 349)5
7 79)0 127)0 192)0 287)0 351)0
8 80)5 129)0 194)5 290)5 355)5
9 80)0 129)0 193)5 296)5 353)5

10 80)0 129)0 193)0 289)5 352)0
15 79)5 129)0 191)5 289)0 349)5

Figure 7. Frequency response functions versus depth.
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The natural frequencies of the circular plate in contact with water are measured
by varying the depth, which are shown in Table 2. From Tables 1 and 2, the
NAVMI factors are extracted and compared to the theoretical NAVMI factors,



EFFECT OF FLUID DEPTH ON THE HYDROELASTIC VIBRATION 183
which are shown in Figures 2}6. As shown in Figures 2 and 3, the experimental
NAVMI factors for the modes with nodal diameter are a little lower than the
theoretical NAVMI factors. However, the experimental NAVMI factors for the
modes without nodal diameter are in fairly good agreement with the theoretical
NAVMI factors as shown in Figures 4}6. It can be said that the theoretical
NAVMI factors predict the e!ect of water depth very well.

The natural frequencies of the plates in contact with water were extracted from
the measured FRFs. Figure 7 shows the changes in the FRF in terms of water
depth. As can be seen from Figure 7, when the water depth is greater than the
diameter of the plate, the natural frequencies of the plate can be easily identi"ed by
the high peaks of the FRF. However, the peak values of the measured FRF decrease
as the water depth decreases. Furthermore, at an extremely small value of water
depth, the sharpness of the FRF shape completely disappears as shown in Figure 7.
In this case, the damping value is not small and thus the natural frequencies are not
identi"able with the peak points of the magnitude of the FRF. Instead, we detect
the natural frequencies by checking the real and imaginary values of the FRF. The
resonance region of the inertance form of the FRF is characterized by a sign change
in the real part accompanied by a peak in the imaginary part.

The reason for this degeneration of the FRF shape as shown in Figure 7 is that
the damping e!ect of the water due to the viscosity becomes signi"cant as the water
depth decreases. Theoretical derivation of the present work was based on the
potential theory, in which the viscosity of the water was ignored. As revealed by the
experiments, the water depth has e!ects not only on the virtual mass but also on
the damping value of the surrounding water. This damping e!ect of the water depth
on the natural frequencies of the plate in contact with water should be further
investigated.

6. DISCUSSION AND CONCLUSIONS

In this paper, the NAVMI factors for the circular plate in contact with water
including the e!ect of water depth are computed theoretically and compared with
the experimental results. To this end, the Hankel transformation is used to simplify
the boundary value problem and Fourier}Bessel series are used to solve dual
integral equations. The numerical method is then employed to approximately
calculate the NAVMI factors.

It is found from both theoretical and experimental results that the e!ect of water
depth on the natural frequencies of the circular plate in contact with water becomes
signi"cant as the water depth decreases. The numerical and experimental results
show that NAVMI factors increase rapidly as the water depth becomes shallow. It
is found that the theoretical NAVMI factors are in good agreement with the
experimental ones. However, the theoretical NAVMI factors deviate slightly from
the experimental NAVMI factors as the water becomes shallow. It is also observed
in experiments that the #uid damping increases as the water becomes shallow so
that the estimation of natural frequencies based on the peaks of the frequency
response curve becomes a di$cult task.
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It can be concluded that the formula and NAVMI factors derived in this study
can accurately predict the changes in natural frequencies of the circular plates in
contact with water including the e!ect of water depth. However, the #uid}structure
interaction problem including #uid damping needs to be investigated.
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